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Abstract

Electrical power systems play a critical role in spacecraft
and aircraft, and they exhibit a rich variety of failure modes.
This paper discusses electrical power system fault diagnosis
by means of probabilistic techniques. Speci�cally, we dis-
cuss our development of a diagnostic capability for an elec-
trical power system testbed, ADAPT, located at NASAAmes.
We emphasize how we have tackled two challenges, regard-
ing modelling and real-time performance, often encountered
when developing diagnostic applications. We carefully dis-
cuss our Bayesian network modeling approach for electrical
power systems. To achieve real-time performance, we build
on recent theoretically well-founded developments that com-
pile a Bayesian network into an arithmetic circuit. Arith-
metic circuits have low footprint and are optimized for em-
bedded, real-time systems such as spacecraft and aircraft.
We discuss our probabilistic diagnostic models developed for
ADAPT along with successful experimental results.

Keywords: Bayesian networks; arithmetic circuits; un-
certainty; model-based diagnosis; knowledge engineering;
electrical power systems; real-time systems; domain mod-
elling.
Track: Emerging Application or Methodologies.
Designation of the application domain(s): Aircraft;

spacecraft; real-time systems; electrical power systems.
Identi�cation of AI techniques employed or issues ad-

dressed: We perform model-based diagnosis using prob-
abilistic techniques. Speci�cally, we discuss the use of
Bayesian networks and arithmetic circuits to perform di-
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agnosis and health management in electrical power sys-
tems in aircraft and spacecraft. Two of the main tools
that we have used, SamIam and ACE, are available to the
general public � see http://reasoning.cs.ucla.
edu/samiam/ and http://reasoning.cs.ucla.
edu/ace/ respectively for details. We address two impor-
tant issues that arise in engineering diagnostic applications
in this area, namely the modelling challenge and the real-
time reasoning challenge. The modelling challenge con-
cerns how to model an EPS by means of Bayesian networks.
The real-time reasoning challenge is associated with the em-
bedding of AI components, including diagnostic reasoners,
into hard real-time systems.
Indication of application status (e.g., feasibility analy-

sis, research prototype, operational prototype, deployed
application, etc.): We discuss the development of a diag-
nostic application for the Advanced Diagnostics and Prog-
nostics Testbed (ADAPT) (see also http://ti.arc.
nasa.gov/adapt/). ADAPT, which has capabilities for
power generation, power storage, and power distribution, is
a fully operational electrical power system that is represen-
tative of such systems in aircraft and spacecraft. Our prob-
abilistic diagnostic application is an operational prototype
that works on real-world data from ADAPT.



Introduction
Electrical power systems (EPS) are critical for the proper op-
eration of aircraft and spacecraft (Button & Chicatelli 2005;
Poll et al. 2007). EPS loads in an aerospace vehicle may in-
clude crucial subsystems such as avionics, propulsion, life
support, and thermal management systems. In addition,
there is a move towards all-electric aircraft and spacecraft
designs, so reliance on EPSs in aerospace is increasing.
Apart from their crucial role in spacecraft and aircraft, elec-
trical power systems also play central roles in other parts of
society, thus proper management of their health is important.
There are several challenges associated with EPS fault di-

agnosis. In this paper we discuss two challenges, which
we call the modelling challenge and the real-time challenge
respectively, that we have encountered while developing a
diagnostic reasoner for a real-world EPS. We believe these
challenges show up in a wide range of applications and are
of general interest.
The modelling challenge concerns how to model an EPS

by means of Bayesian networks. Our use of Bayesian net-
works is motivated by the combination of deterministic and
stochastic behavior seen in such systems. For example,
there is uncertainty regarding component and sensor failure.
One part of the challenge is to construct an EPS diagnos-
tic model that captures both types of behavior. Another part
of the challenge is to model the EPS in suf�cient detail to
ensure high diagnostic accuracy. At the same time, the di-
agnostic model developed for a particular EPS should be ro-
bust, easy to extend and update (recon�gurable), and general
enough that essentially the same approach can be used when
modeling similar EPSs.
The real-time reasoning challenge is associated with the

embedding of AI components, including diagnostic reason-
ers, into hard real-time systems (Musliner et al. 1995).
For NASA, decision support for manned missions and au-
tonomous action for unmanned missions are both of great
interest. The avionics of both manned and unmanned vehi-
cles often utilize a hard real-time operating system (RTOS).
An embedded diagnostic engine, which is part of a vehicle's
avionics, should therefore be designed within the RTOS
framework and within its resource bounds. For example,
an RTOS task needs to declare a worst-case execution time
(WCET). Unfortunately, it is also known that BN infer-
ence problems are inherently computationally hard (Cooper
1990; Shimony 1994; Park & Darwiche 2004). In addition,
many inference algorithms are associated with high expec-
tation and/or variance in their execution times, and their
WCET is unknown. The real-time reasoning challenge is
associated with integrating the computationally hard diag-
nosis problem into an RTOS setting, thereby achieving real-
time diagnostic performance that is crucial in many aircraft
and spacecraft applications.
In this paper we present our Bayesian network approach

to EPS fault diagnosis. We discuss the development of a
BN for the Advanced Diagnostics and Prognostics Testbed
(ADAPT) developed and located at NASA Ames (Poll et
al. 2007). The BN explicitly represents the health of sen-
sors and components, and also contains random variables for
other EPS parts. We emphasize the structure of the Bayesian

network, and also brie�y discuss the modeling process in-
cluding support by semi-automatic BN generation based on
a high-level system model.
We have experimentally evaluated our Bayesian network

on a number of ADAPT fault scenarios. A key considera-
tion in our experimentation is that the diagnostics process
ultimately will be a set of RTOS real-time tasks (Meng-
shoel 2007a). In order enable such real-time embedding,
the ADAPT BN was compiled off-line into an arithmetic
circuit, which was then evaluated on-line (Darwiche 2003;
Chavira & Darwiche 2007). A unique point compared to
previous work (Chien, Chen, & Lin 2002; Yongli, Limin, &
Jinling 2006) is how a complex diagnostic search problem
is reduced to two simple components: an arithmetic circuit
and a small-footprint arithmetic circuit evaluator. Compil-
ing the ADAPT BN, which contains over 400 nodes rep-
resenting over 100 EPS components, to an arithmetic cir-
cuit, and evaluating it using the ACE arithmetic circuit
evaluator, turns out to give accurate diagnostic results as
well as very fast and predictable inference times. The
mean arithmetic circuit evaluation time is less than one
millisecond for all our fault scenarios. This is a success-
ful demonstration of our approach on a real-world problem
of great importance to NASA (Button & Chicatelli 2005;
Poll et al. 2007).
The rest of this paper is structured as follows. First we

discuss challenges associated with the diagnosis of electri-
cal power systems, and why this is an important problem.
Second, we present our approach to diagnosis of electrical
power systems by means of Bayesian networks and arith-
metic circuits. Finally, we present empirical results for
an electrical power system test bed developed at the NASA
Ames research center.

Diagnosis of Electrical Power Systems
In this section we discuss the crucial role of electrical power
in aerospace and present an electrical power system testbed
developed at the NASA Ames Research Center.

The Role of Electrical Power Systems in Aerospace
EPS loads in an aerospace vehicle include crucial subsys-
tems: avionics, propulsion, life support, and thermal man-
agement systems. Loss of electrical power to any of these
subsystems could lead to serious consequences for person-
nel or the vehicle.
There are, from the point of view of vehicle health man-

agement, several technical challenges associated with elec-
trical power systems in general. First, electrical power sys-
tems often have a large number of distinct modes due to
mode-inducing components such as relays, circuit breakers,
and loads. If an EPS has m such components, and we con-
servatively assume 2 discrete states for each, there are po-
tentially 2m modes in the EPS. Second, EPSs are hybrid
systems that combine discrete modes and continuous dy-
namics; switches between modes are both commanded (for
relays and loads) and autonomous (for circuit breakers and
health states). Third, there are timing issues including tran-
sient and delayed behavior. Fourth, there is both sensor and
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Figure 1: Our approach uses three distinct models that play
different roles in the development process: a system model,
a Bayesian network, and an arithmetic circuit. The system
model has two components, namely the system topology and
the component types.

system noise in EPSs. Fifth, the number and capabilities of
sensors can be quite limited compared to what one would
like to track, namely the health of all EPS components.

ADAPT: An Electrical Power System Testbed
ADAPT provides: (i) a standard testbed for evaluating di-
agnostic algorithms and software; (ii) a capability for con-
trolled insertion of faults, giving repeatable failure scenar-
ios; and (iii) a mechanism for maturing and transitioning di-
agnostic technologies onto manned and unmanned vehicles
(Poll et al. 2007). The EPS functions of ADAPT are as fol-
lows (see also http://ti.arc.nasa.gov/adapt/).
For power generation, ADAPT currently uses utility power;
there are plans to also investigate solar power generation.
For power storage, ADAPT contains 3 sets of 24 VDC 100
Amp-hr sealed lead acid batteries. Power distribution is
aided by electromechanical relays and two load banks with
AC and DC outputs; there are also several circuit breakers.
Our loads include pumps, fans, and light bulbs. There are
sensors of several types, speci�cally for measuring voltage,
current, relay position, temperature, light, and liquid �ow.
Control and monitoring of ADAPT takes place through pro-
grammable automation controllers. With the sensors in-
cluded, ADAPT contains a few hundreds of components and
is representative of EPSs used in aerospace.

Meeting The Modelling Challenge
Bayesian networks (BNs) are used to represent multivari-
ate probability distributions for the purpose of reasoning
and learning under uncertainty (Pearl 1988). Random vari-
ables are in BNs represented by means of nodes in a directed
acyclic graph. While a joint probability table's size is expo-
nential in the number of discrete random variables, the BN
provides a mechanism to compactly represent the joint prob-

ability table. BNs can contain both discrete and continuous
random variables; our current EPS model contains discrete
variables only.
The main points of our BN-based EPS modelling ap-

proach are as follows: (A) We use three different mod-
els during development and deployment. (B) We explicitly
represent EPS health using BN nodes, thus supporting dif-
ferent diagnostic queries of interest. (C) Finally, we take
a component-oriented and causal approach, where the BN
structure re�ects the components and causal structure of an
EPS. In the rest of this section we discuss these three main
points in turn.
(A) Figure 1 illustrates the three different EPS models we

have used: the system model (consisting of a system topol-
ogy and component types), the Bayesian network, and the
arithmetic circuit. The justi�cation for introducing a sepa-
rate system model is the EPS structure present (as re�ected
in the distinction between the system topology and the com-
ponent types) as well as the sheer size of BNs represent-
ing EPSs. Our current BN consists of well over 400 nodes,
and it is easy to envision how a more detailed BN or a BN
for a larger EPS could easily contain 1000 BN nodes or
more. Unfortunately, developing such large BNs by hand,
especially in the face of EPS change, is non-trivial. To
meet this challenge, the Of�ine Generation process depicted
in Figure 1 supports the automatic generation of an EPS
Bayesian network from a high-level system model. This
architecture, which distinguishes our work from previous
work on EPS fault diagnosis using BNs (Chien, Chen, &
Lin 2002; Yongli, Limin, & Jinling 2006), accommodates
rapid changes in the EPS architecture as well as in individ-
ual EPS components. A key point here is that the system
model is tailored to EPSs and is much more succinct than a
Bayesian network, which again is much more succinct than
an arithmetic circuit. Figure 1 shows how the diagnostic sys-
tem developer is supported by a technique and tool pipeline
for auto-generation of a Bayesian network from a high-level
system model, and from a Bayesian network to an arithmetic
circuit suitable for embedded reasoning. The Of�ine Com-
pilation process generates an arithmetic circuit and is further
discussed in our next section.
(B) The ADAPT BN currently contains over 400 nodes,

and models most of ADAPT from the batteries downstream.
Since it is impossible to presents this BN in its totality here,
Figure 2 presents the inputs and outputs of the BN along
with a small example. Figure 3 shows the BN's conditional
probability tables (CPTs) along with its corresponding arith-
metic circuit. We now discuss the different BN node types
that we have used to model an EPS. Let X denote all BN
nodes. The EPS health nodes areHE =HC [HS , where
HE � X and HC \HS = ?. Here, HC are the com-
ponent health nodes and represent the health of an EPS ex-
cluding its sensors.HS are the sensor health nodes, and rep-
resent the health of the EPS sensors, both their failure and
nominal (healthy) modes. By introducingHC andHS , we
represent the health of EPS components and sensors explic-
itly in the BN. The BN also contains other types of nodes,
representing other parts of an EPS subsystem. Speci�cally,
we have input or evidence nodes E, with E = EC [ ES ,



Bayesian
InferenceCommand nodes

Health nodes

Sensor nodes Bayesian
InferenceCommand nodes

Health nodes

Sensor nodes Bayesian
InferenceCommand nodes

Health nodes

Sensor nodes Bayesian
InferenceCommand nodes

Health nodes

Sensor nodes

Figure 2: Our Bayesian diagnostic process has as input sen-
sor readings for sensor nodes and observed commands for
command nodes, and as output query nodes that provide the
health status of sensors and EPS components.

whereE �X andEC \ES = ?. Here,EC are command
nodes representing commands from a user to the EPS. ES

are the sensor nodes, which are used to input sensor readings
� for example voltage, current, and temperature� from the
EPS. We also have status nodes S, with S �X , which are
nodes that re�ect the EPS structure but do not �t into any of
the categories above. Finally, we haveX = HE [E [ S,
withHE \E = ?,HE \ S = ?, and E \ S = ?.
(C) Figure 2 and Figure 3 provide a small example of our

component-oriented and causal approach to EPS modelling.
Here, HC = fHealthRelayg, HS = fHealthSensorg,
EC = fCommandRelayg, ES = fFeedbackSensorg, and
S = fStatusRelayg. This small BN with �ve nodes in fact
represents an EPS component, namely a relay. Causally, the
BN represents how the status of a relay (here StatusRelay)
depends on the command given to it, CommandRelay, as
well as its health, HealthRelay. In addition, the feedback
message from the relay, FeedbackSensor, depends not only
on the relay's status but also on the sensor's health, Health-
Sensor. The algorithm that creates a Bayesian network from
the system model works as follows. Given small BNs repre-
senting different components, as presented above, an overall
BN is composed according to the EPS system topology.
To solve the EPS health monitoring problem, we dy-

namically update the BN model using sensor readings and
user commands. We then pose a maximum a posteriori
hypothesis query MAP(Q, e) over nodes Q for evidence
e. Here, MAP(Q, e) computes the joint explanation over
Q � X � E with maximal probability, given e (Park &
Darwiche 2004) (We may also approximate MAP as further
discussed below.) Depending on Q we obtain three slightly
different diagnostic queries, all of great interest:

� Diagnosis of components MAP(HC ,e): Query regarding
the health of the EPS componentsHC

� Diagnosis of sensors MAP(HS ,e): Query regarding the

health of the EPS sensorsHS

� EPS diagnosis MAP(HE ,e): Query regarding the health
status of the entire EPS HE (both components HC and
sensorsHS)
While algorithms for ef�ciently computing MAP have

been developed (Park & Darwiche 2004), it can be useful to
approximate MAP using MPE (most probable explanation)
or MLV (most likely value, which can easily be computed
from marginals) (Pearl 1988). We say MAPMPE(Q,e) and
MAPMLV(Q,e) respectively for these two approximations.
Returning to Figure 2, we considerHE = fHealthRelay,

HealthSensorg and e = fCommandRelay = cmdClose,
FeedbackSensor = readClosedg. Using computation
of marginals, as illustrated in Figure 2, we obtain
MAPMLV(HE ,e) = fHealthRelay = healthy, HealthSensor
= healthyg.

Meeting The Real-Time Challenge
Musliner and his coauthors identi�ed three approaches to
real-time AI (Musliner et al. 1995); we employ what they
call �embedding AI into a real-time system�. Speci�cally,
we consider the real-time operating systems (RTOSs) used
in current aircraft and spacecraft avionics. These RTOSs
are typically based on priority-based preemptive scheduling,
where higher-priority tasks preempt lower-priority tasks.
Each periodic RTOS task has a priority, a period, a dead-
line, and a worst-case execution time (WCET). The im-
plication of using an RTOS as a platform for diagnos-
tics is resource-boundedness. A periodic diagnostic task,
when designed as a periodic RTOS task, needs to adhere
to these hard real-time requirements (Musliner et al. 1995;
Mengshoel 2007a).
At the same time, the computational hardness of most BN

inference problems is well-known (Cooper 1990; Shimony
1994; Park &Darwiche 2004). In addition, empirical studies
have established the dif�culty of relatively small application
BNs (Shwe et al. 1991) as well as synthetic BNs (Meng-
shoel, Wilkins, & Roth 2006; Mengshoel 2007b).
A designer of BN-based diagnostic systems must there-

fore, in the general case, carefully align BN resource con-
sumption with the resource bounds imposed by the com-
putational platform. The compilation approach to proba-
bilistic inference is attractive in such resource-bounded set-
tings. Wemention two compilation paradigms, namely com-
pilation to clique trees (Lauritzen & Spiegelhalter 1988;
Andersen et al. 1989) and compilation to arithmetic circuits
(Darwiche 2003; Chavira & Darwiche 2007). The arith-
metic circuit paradigm is based on the observation that a BN
may be represented as a multi-variate polynomial (MVP) in
which terms consist of probabilities from the BN's CPTs
and indicators take into account evidence. Unfortunately, an
MVP grows exponentially with the size of a BN, hence one
compiles a BN not into an MVP but instead into an equiv-
alent and more compact arithmetic circuit. An example is
shown in Figure 3. In many cases, sparse arithmetic circuits
exist for BNs with 100s or 1000s of nodes. The arithmetic
circuit's size depends on a BN's graphical and local struc-
ture: if BN has local structure, the arithmetic circuit may
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Figure 3: Compilation of a Bayesian network representing
an electrical power system relay (top) into an equivalent
arithmetic circuit (bottom).

be small despite large treewidth. A range of probabilistic
queries � including MAP, MPE, and marginals/MLVs �
can be computed using an arithmetic circuit.
The arithmetic circuit evaluator (ACE) was used to com-

pile the ADAPT BN into an arithmetic circuit (see http:
//reasoning.cs.ucla.edu/ace/ for details on
ACE). ACE is a new technology that exploits a diagnostic
model's behavioral aspects, and speci�cally its local struc-
ture. By being sensitive to local structure, ACE has been
able to compile BNs with prohibitively large treewidths
(Chavira & Darwiche 2007). For ADAPT, we have mod-
elled the EPS such that its structure is maintained to a great
degree; in addition the ADAPT BN has a large number of
deterministic nodes. What do the arithmetic circuits look
like for ADAPT, when compiled using ACE? Table 1 sum-
marizes the results of ACE compilation, using the tabular

Parameter MPEs Marginals
Network Read Time (sec.) 0:328 0:313
Initialization Time (sec.) 0:25 0:25
Compile Time (sec.) 0:063 0:047
Write Time (sec.) 0:031 0:047
Total Time (sec.) 0:672 0:657
Maximum Cluster Size 256 256
Number of Nodes 3819 3854
Number of Edges 5660 5730
Number of Variables 685 685
Collisions 0:5845 0:5788

Table 1: Statistics for the compilation of the ADAPT BN
into two arithmetic circuits for computation of MPEs and
marginals respectively.

compilation option, into two arithmetic circuits for compu-
tation of MPEs and marginals respectively. The measure-
ments reported in Table 1 (as well as in Figure 4) were made
on a PC with an Intel 4 1.83 Ghz processor, 1 GB RAM, and
Windows XP. For both arithmetic circuits generated here, we
see from Table 1 that the total compilation time is less than
one second and the arithmetic circuits, measured in number
of nodes and edges, are relatively small. The small sizes of
the arithmetic circuits enables real-time computation, as we
investigate in the next section.

Experimental Results
We now turn to experiments using the ADAPT Bayesian
network and arithmetic circuits. For experimentation, EPS
failure scenarios were generated using the ADAPT EPS at
NASA Ames. These scenarios cover both component fail-
ures (experiments 304, 306, 309, and 310 in Table 2) and
sensor failures (experiments 305, 308, and 311); many pre-
vious efforts have only considered one type of failure. In
each of these experiments, ADAPT's initial state was as fol-
lows: Circuit breakers were commanded closed; they had
evidence e clamped to cmdClose. Relays were commanded
open; they had evidence clamped to cmdOpen in e. In this
initial state, all health nodesHE are deemed healthy when
computing MAP, MAPMPE, and MAPMLV. After ADAPT
system recon�gurations and fault insertion (for example in-
sertion of �Relay EY260 failed open� � see ID 304 in Table
2), the ADAPT BN or an arithmetic circuit compiled from it
is used to compute a diagnosis.
The Bayesian network developed contains over 400 vari-

ables. We executed probabilistic queries over the health vari-
ables HE in order to �nd out which components or sen-
sors, if any, were in non-healthy states. Here, ACE was
used to compute MPEs and marginals/MLVs. We report
here on the queries MAPMPE(HE , e) and MAPMLV(HE ,
e) computed by ACE. To compute MAP(HE , e), SamIam
was used (see http://reasoning.cs.ucla.edu/
samiam/ for details).
The results of the ADAPT experiments are provided in

Table 2 and in Figure 4. Since HE contains over 120
nodes, we only show the variables deemed to be non-healthy



ID Fault Description Diagnosis: MAP, MAPMPE, and MAPMLV Correct
304 Relay EY260 failed open Health_relay_ey260_cl = stuckOpen Yes
305 Relay feedback sensor ESH175 failed Health_relay_ey175_cl = stuckOpen Yes
306 Circuit breaker ISH262 tripped Health_breaker_ey262_op = stuckOpen Yes
308 Voltage sensor E261 failed Health_e261 = stuckVoltageLo Yes
309 Battery BATT1 voltage low Health_battery1 = stuckDisabled Yes
310 Inverter INV1 failed off Health_inv1 = stuckOpen Yes
311 Load sensor LT500 failed Health_LT500 = stuckLow Yes

Table 2: Diagnostic results for different fault scenarios (with IDs 304, 305, . . . ) for the electrical power system testbed ADAPT.
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Figure 4: Execution time results for ACE for the ADAPT
testbed. Top: Results for the most probable explanation
(MPE); Bottom: Results for the most likely value (MLV).

in Table 2. Further, the diagnostic results of the queries
MAPMPE(HE , e), MAPMLV(HE , e), and MAP(HE , e)
turned out to be the same, hence we consolidate them into
one column in Table 2. ADAPT uses a 2 Hz sampling rate,
and a probabilistic query was posed to ACE after each sam-
ple in an experimental run. The execution time statistics
displayed in Figure 4 are based on the execution times for
all probabilistic queries during an experimental run. Each
execution time is for an entire inference step, i.e. translat-
ing measurements to evidence, committing evidence to the
arithmetic circuit, and evaluating the arithmetic circuit.
Our main observations regarding these experiments are as

follows. First, we see in Table 2 that the different diagnos-

tic queries correctly diagnose all these component and sen-
sor failure scenarios. Second, we would like to emphasize
the fast and predictable inference times for the arithmetic
circuits � see Figure 4. These are very important factors
for real-time applications including electrical power system
health management.

Conclusion
Electrical power systems are crucially important in space-
craft and aircraft, thus motivating our interest in diagnosis
of faults in such systems. In this paper we have presented a
probabilistic approach to fault diagnosis in electrical power
systems. Speci�cally, we have discussed how ADAPT, an
electrical power system testbed at NASA Ames, can be rep-
resented as a Bayesian network which is the basis for an-
swering diagnostic queries. We have highlighted two chal-
lenges, the modelling and real-time reasoning challenges,
often associated with the development of model-based di-
agnostic engines for spacecraft and aircraft, and shown how
they are overcome in our setting.
Meeting the modelling challenge, we have discussed how

the EPS BN is structured in a component-based and causal
manner. We have also considered how to meet the real-
time (or resource-bounded) challenge associated with the
real-time operating systems (RTOSs) used in spacecraft and
aircraft. Our approach meets this challenge by compila-
tion into an arithmetic circuit, where inference is fast and
predictable, thereby enabling embedding into real-time tasks
of RTOSs. Our BN-based fault diagnosis methodology has
been successfully evaluated through experiments using real-
world data from the ADAPT EPS.
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